

1

Quick Reference Guide to Optimization

with Intel® C++ and Fortran Compilers

v19.1

For IA-32 processors, Intel® 64 processors, Intel® Xeon Phi™ processors and

compatible non-Intel processors.

Contents
Application Performance .. 2

General Optimization Options and Reports ** ... 3

Parallel Performance ** .. 4

Recommended Processor-Specific Optimization Options ** ... 5

Optimizing for the Intel® Xeon Phi™ x200 product family .. 6

Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options 7

Fine-Tuning (All Processors) ** ... 8

Floating-Point Arithmetic Options .. 10

Processor Code Name With Instruction Set Extension Name Synonym .. 11

Frequently Used Processor Names in Compiler Options .. 11

Intel® C++ Compiler Based on the Modern LLVM* Framework, aka ICC NextGen 12

‡ Optimization Notice ... 13

For product and purchase information, visit the Intel® Software

Development Tools site at: http://intel.ly/sw-dev-tools.

§ Intel® Xeon Phi™ processors are supported by compilers within Intel® Parallel Studio XE, but not within

Intel® System Studio.

** Several of these options are available for both Intel® and non-Intel microprocessors but they may

perform more optimizations for Intel microprocessors than they perform for non-Intel

microprocessors.‡

http://intel.ly/sw-dev-tools

2

Application Performance
A Step-by-Step Approach to Application Tuning with Intel Compilers

Before you begin performance tuning, check correctness of your application by building it without

optimization using /Od (-O0).

1. Measure performance using the general optimization options (Windows* /O1, /O2 or /O3;

Linux* and macOS* -O1, -O2, or -O3) to see which one works best for your application. Most

users should start at /O2 (-O2), the default, before trying more advanced optimizations. Next,

try /O3 (-O3) for loop-intensive applications.**

2. Fine-tune performance using processor-specific options such as /Qx (-x) or /arch (-m).

Examples are /QxCORE-AVX512 (-xcore-avx512) for the Intel® Xeon® Scalable processor family

and /arch:SSE3 (-msse3) for compatible, non-Intel processors that support at least the Intel®

SSE3 instruction set. Or /QxHOST (-xhost) will use the most advanced instruction set for the

processor on which you compiled.**

3. Add interprocedural optimization (IPO), /Qipo (-ipo) and/or profile-guided optimization (PGO),

/Qprof-gen and /Qprof-use (-prof-gen and -prof-use), then measure performance again to

determine whether your application benefits from one or both of them.

4. Use Intel® Advisor and Intel® VTune™ Amplifier†† to help you identify serial and parallel

performance “hotspots” within your application that could benefit from further performance

tuning. Use the compiler optimization report /Qopt-report (-qopt-report) to help identify

individual optimization opportunities.

5. Optimize for parallel execution on multi-threaded, multi-core and multi-processor systems

using: the auto-parallelization option /Qparallel (-parallel); OpenMP* pragmas or directives

along with the option /Qopenmp (-qopenmp); or by using the Intel® Performance Libraries

included with the product.** Use Intel® Inspector to reduce the time to market for threaded

applications by diagnosing memory and threading errors and speeding up the development

process.

6. Further optimize your application for SIMD through explicit vector programming using the

SIMD features of OpenMP. The OpenMP directives you add are automatically recognized with

-O2 and higher.

7. On the Intel® Xeon Phi™ x200 processor family, consider adding data prefetching based on the

results of step 4.

For more details, please consult the main product documentation at https://software.intel.com/intel-

software-technical-documentation .

** Several of these options are available for both Intel® and non-Intel microprocessors, but they may perform more optimizations

for Intel microprocessors than they perform for non-Intel microprocessors.‡

†† Some features of this product cannot be used on non-Intel microprocessors.

https://software.intel.com/intel-software-technical-documentation
https://software.intel.com/intel-software-technical-documentation

3

General Optimization Options and Reports **

Windows* Linux* &

macOS*

Comment

/Od -O0 No optimization. Used during the early stages of application

development and debugging.

/Os

/O1

-Os

-O1

Optimize for size. Omits optimizations that tend to increase object

size. Creates the smallest optimized code in most cases.

May be useful in large server/database applications where memory

paging due to larger code size is an issue.

/O2 -O2 Maximize speed. Default setting. Enables many optimizations,

including vectorization and intra-file interprocedural optimizations.

Creates faster code than /O1 (-O1) in most cases.

/O3 -O3 Enables /O2 (-O2) optimizations plus more aggressive loop and

memory-access optimizations, such as scalar replacement, loop

unrolling, loop blocking to allow more efficient use of cache and

additional data prefetching.

The /O3 (-O3) option is particularly recommended for applications

that have loops that do many floating-point calculations or process

large data sets. These aggressive optimizations may occasionally

slow down other types of applications compared to /O2 (-O2).

/Qopt-report

[:n]

-qopt-report

[=n]

Generates an optimization report, by default written to a file with

extension .optrpt. n specifies the level of detail, from 0 (no report)

to 5 (maximum detail). Default is 2.

/Qopt-report-

file:name

-qopt-report-

file=name

Writes an optimization report to stderr, stdout or to the file name.

/Qopt-report-

phase:name1,

name2, …

-qopt-report-

phase=name1,

name2,…

Optimization reports are generated for optimization phases name1,

name2, etc. Possible phases include:

all – Optimization reports for all phases (default)

loop – Loop nest and memory optimizations

vec – auto-vectorization and explicit vector programming

par – auto-parallelization

openmp – threading using OpenMP

cg – code generation

ipo – Interprocedural Optimization, including inlining

pgo – Profile Guided Optimization

/Qopt-report-

routine:substri

ng

-qopt-report-

routine=

substring

Generates reports only for functions or subroutines whose names

contain substring. By default, reports are generated for all

functions and subroutines.

/Qopt-report-

filter:”string”

-qopt-report-

filter=”string”

Restricts reports to the file, function or subroutine and/or ranges of

line numbers specified by “string”, e.g. “myfile,myfun,1-10”.

/Qopt-report-

annotate[:fmt]

-qopt-report-

annotate[=fmt]

Annotates source listing with optimization information (default off).

Possible values of fmt are text (default) or html.

** Several of these options are available for both Intel® and non-Intel microprocessors but they may perform more

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.‡

4

Parallel Performance **

Windows* Linux*

macOS*

Comment

/Qopenmp -qopenmp Multi-threaded code and/or SIMD code is generated when OpenMP*

directives are present. For Fortran only, makes local arrays automatic

and may require an increased stack size.

/Qopenmp-

simd

-qopenmp-

simd

SIMD code is generated when OpenMP SIMD directives are present.

Default: on at -O2 and higher.

/Qopenmp-

stubs

-qopenmp-

stubs

Ignores OpenMP directives and links references to OpenMP run-time

library functions to stub (dummy) functions assuming single-threaded

operation.

/Qparallel -parallel The auto-parallelizer detects simply structured loops that may be

safely executed in parallel, including the DO CONCURRENT construct,

and automatically generates multi-threaded code for these loops.

/Qopt-

matmul[-]

-q[no-]opt-

matmul

This option enables [disables] identification of matrix multiplication

loop nests and replaces them with a compiler-generated matmul

library call for improved performance. This option is enabled by default

if options /O3 (-O3) and /Qparallel (-parallel) are specified. It has no

effect unless option /O2 (-O2) or higher is set.

/Qcoarray

[:kywd]

-coarray

[=kywd]

Enables the coarray feature of Fortran 2008 (Fortran only). kywd

options are shared, distributed, coprocessor and single. See the

compiler reference guide for more detail.

/Qcoarray-

num-images:n

-coarray-

num-

images=n

n specifies the number of images that run a coarray executable.

Off by default (number of images determined at run-time). (Fortran

only)

/Qcoarray-

config-

file:filename

-coarray-

config-

file=filename

filename specifies an MPI configuration file (may include a path).

Default is off, MPI default settings are used. (Fortran only)

/Qmkl:name -mkl=name Links to the Intel® Math Kernel Library (Intel® MKL). Off by default.

Possible values of name are:

parallel Links the threaded part of Intel MKL (default)

sequential Links the non-threaded part of Intel MKL

cluster Links cluster and sequential parts of Intel MKL

 (cluster-specific libraries are not available for macOS*)

/Qtbb -tbb Links to Intel® Threading Building Blocks (Intel® TBB). (C++ only)

/Qdaal[:lib] -daal[=lib] Links to the Intel® Data Analytics Acceleration Library (Intel® DAAL).

parallel is the default value of lib, links to the threaded library.

sequential links to a non-threaded library version. (C++ only)

** Several of these options are available for both Intel® and non-Intel microprocessors but they may perform more

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.‡

5

Recommended Processor-Specific Optimization Options **

Windows* Linux*

macOS*

Comment

/Qxtarget

-xtarget

Generates specialized code for any Intel® processor that supports the

instruction set specified by target. The executable will not run on non-Intel

processors or on Intel processors that support only lower instruction sets.

For possible values of target see Frequently Used Processor Names in

Compiler

Note: This option enables additional optimizations that are not enabled

by the /arch or -m options. On 64 bit macOS, options SSE3 and SSE2 are

not supported.

/arch:target -mtarget Generates specialized code for any Intel processor or compatible, non-

Intel processor that supports the instruction set specified by target.

Running the executable on an Intel processor or compatible, non-Intel

processor that does not support the specified instruction set may result in

a run-time error.

See the table Frequently Used Processor Names in Compiler Options for

possible values of target .

Note: Specifying a target value of ia32 generates non-specialized, generic

x86/x87 code. It is supported for IA-32 architecture targets only. It is not

supported on macOS*.

/QxHOST -xhost Generates instruction sets up to the highest that is supported by the

compilation host. On Intel processors, this corresponds to the most

suitable /Qx (-x) option; on compatible, non-Intel processors, this

corresponds to the most suitable of the /arch (-m) options.

/Qaxtarget

-axtarget May generate specialized code for any Intel processor that supports the

instruction set specified by target, while also generating a default code

path. See the table Frequently Used Processor Names in Compiler

Options for possible values of target . Multiple values, separated by

commas, may be used to tune for additional Intel processors in the same

executable, e.g. /QaxAVX,SSE4.2. The default code path will run on any

Intel or compatible, non-Intel processor that supports at least SSE2, but

may be modified by using in addition a /Qx (-x) or /arch (-m) switch.

For example, to generate a specialized code path optimized for the 4th

generation Intel® Core™ processor family and a default code path

optimized for Intel processors or compatible, non-Intel processors that

support at least SSE3, use /QaxCORE-AVX2 /arch:SSE3 (-axcore-avx2 -

msse3 on Linux*).

At runtime, the application automatically detects whether it is running on

an Intel processor, and if so, selects the most appropriate code path. If an

Intel processor is not detected, the default code path is selected.

/Qvecabi:

cmdtarget

-vecabi=

cmdtarget

Compiler creates vector variants of SIMD functions for targets specified by

the /Qx or /Qax (-x or -ax) switches above.

/Qopt-zmm-

usage:high

-qopt-zmm-

usage=high

Enables more aggressive generation of 512 bit SIMD instructions when

used with /QxCORE-AVX512 (Windows*) or -xcore-avx512 (Linux* or

macOS*).

6

Please see the online article Intel Compiler Options for Intel SSE and Intel AVX Generation and

Processor-Specific Optimizations to view the latest recommendations for processor-specific

optimization options.

The Intel® Compiler User and Reference Guides are available at Intel C++ Compiler 19.1 Developer

Guide and Reference and Intel Fortran Compiler 19.1 Developer Guide and Reference.

** Several of these options are available for both Intel® and non-Intel microprocessors but they may perform more

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.‡

Optimizing for the Intel® Xeon Phi™ x200 product family

Windows* Linux* Comment

/Qopt-threads-

per-core:n

-qopt-threads-

per-core=n

Hint to the compiler to optimize for n threads per physical core,

where n=1, 2, 3 or 4.

/Qopt-

prefetch:n

-qopt-

prefetch=n

Enables increasing levels of software prefetching for n=0 to 5.

/Qopt-prefetch-

distance=n1[,n2]

-qopt-prefetch-

distance=n1[,n2]

Specifies how many vectorized loop iterations ahead to prefetch data.

n1 is for L2, n2 (≤n1) is for L1 cache. Default is off (compiler chooses).

/Qimf-domain-

exclusion:n

-fimf-domain-

exclusion=n

Specifies special case arguments for which math functions need not

conform to IEEE standard. The bits of n correspond to the domains:

0 – extreme values (e.g. very large; very small; close to singularities);

1 – NaNs; 2 – infinities; 3 – denormals; 4 – zeros.

/align:

array64byte

-align

array64byte

Seek to align the start of arrays at a memory address that is divisible

by 64, to enable aligned loads and help vectorization. (Fortran only)

/Qopt-assume-

safe-padding

-qopt-assume-

safe-padding

Asserts that the compiler may safely access up to 64 bytes beyond

the end of array or dynamically allocated objects as accessed by the

user program. User is responsible for padding. Off by default.

For more optimization detail, see https://software.intel.com/en-us/articles/intel-xeon-phi-

coprocessor-code-named-knights-landing-application-readiness ;

https://software.intel.com/articles/advanced-optimizations-for-intel-mic-architecture; and the

Intel® Compiler User and Reference Guides at Intel C++ Compiler 19.1 Developer Guide and

Reference and Intel Fortran Compiler 19.1 Developer Guide and Reference.

§ Intel Xeon Phi processors are supported by compilers within Intel® Parallel Studio XE, but not within Intel® System Studio

https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-code-named-knights-landing-application-readiness
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-code-named-knights-landing-application-readiness
https://software.intel.com/articles/advanced-optimizations-for-intel-mic-architecture
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference
https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference

7

Interprocedural Optimization (IPO) and

Profile-Guided Optimization (PGO) Options

Windows* Linux*

macOS*

Comment

/Qip

-ip Single file interprocedural optimizations, including selective

inlining, within the current source file.

/Qipo[n] -ipo[n] Permits inlining and other interprocedural optimizations

among multiple source files. The optional argument n

controls the number of object files created. Default for n is 0

(the compiler chooses).

Caution: This option can in some cases significantly increase

compile time and code size.

/Qipo-jobs[n] -ipo-jobs[n] Specifies n, the number of commands (jobs) to be executed

simultaneously during the link phase of Interprocedural

Optimization (IPO). The default is 1 job.

/Ob2 -finline-

functions or

-inline-level=2

This option enables function inlining within the current

source file at the compiler’s discretion. This option is enabled

by default at /O2 and /O3 (-O2 and -O3).

Caution: For large files, this option may sometimes

significantly increase compile time and code size. It can be

disabled by /Ob0 (-fno-inline-functions on Linux* and

macOS*)

/Qinline-

factor:n

-inline-factor=n This option scales the total and maximum sizes of functions

that can be inlined. The default value of n is 100, i.e., 100%

or a scale factor of one.

/Qprof-gen

[:kywd]

-prof-gen

[=kywd]

Instruments a program for profile generation.

kywd= threadsafe allows profile generation for threaded

applications. kywd=srcpos and globdata collect additional

data useful for function and data ordering.

/Qprof-use -prof-use Enables the use of profiling information during optimization.

/Qprof-dir dir -prof-dir dir Specifies a directory for profiling output files, *.dyn and *.dpi.

(Alternatively, the directory may be specified by the

environment variable PROF_DIR).

/Qprof-gen-

sampling

-prof-gen-

sampling

Generates additional debug information for use in hardware

event based profile generation using Intel® VTune™ Amplifier

/Qprof-use-

sampling:file

-prof-use-

sampling=file

Enables the use of hardware event based profiling

information from file during optimization

8

Fine-Tuning (All Processors) **

Windows* Linux* & macOS* Comment

/Qunroll[n] -unroll[n] Sets the maximum number of times to unroll loops. n=0

disables loop unrolling. Default is /Qunroll (-unroll),

which uses default heuristics.

/Qopt-prefetch:n -qopt-prefetch=n Enables increasing levels of software prefetching from

n=0 (default, off) to n=5 (aggressive prefetching).

Warning: excessive prefetching may result in resource

conflicts that degrade performance.

/Qopt-prefetch-

issue-excl-hint

-qopt-prefetch-issue

-excl-hint

Enables generation of exclusive prefetches (in

anticipation of a write) on processors that support the

prefetchw instruction.

/Qopt-prefetch-

distance:n1[,n2]

-qopt-prefetch-

distance=n1[,n2]

Specifies how many vectorized loop iterations ahead to

prefetch data.

n1 is for L2, n2 (≤n1) is for L1 cache. Default is off

(compiler chooses).

/Qopt-block-factor:n -qopt-block-

factor=n

Specifies a preferred loop blocking factor n, the number

of loop iterations in a block, overriding default

heuristics. Loop blocking, enabled at /O3 (-O3), is

designed to increase the reuse of data in cache.

/Qopt-streaming-

stores:mode

-qopt-streaming-

stores mode

always Encourages generation of streaming stores

that bypass cache, assuming application is memory

bound with little data reuse

never Disables generation of streaming stores

auto Uses default compiler heuristics

/Qrestrict[-] -[no]restrict Enables [disables] pointer disambiguation with the

restrict keyword. Off by default. (C/C++ only)

/Oa -fno-alias May assume no aliasing in the program. Off by default.

/Ow -fno-fnalias May assume no aliasing within functions. Off by default.

/Qalias-args[-] -fargument-[no]alias Implies function arguments may be aliased [are not

aliased]. On by default. (C/C++ only). -fargument-

noalias often helps the compiler to vectorize loops in C

or C++ involving function array arguments.

/Qansi-alias[-] -[no-]ansi-alias Enables [disables] ANSI and ISO C Standard aliasability

rules and those in the Fortran standard. Defaults:

disabled on Windows*; enabled on Linux* and macOS*.

/Qopt-class-

analysis[-]

-q[no-]opt-class-

analysis

C++ class hierarchy information is used to analyze and

resolve C++ virtual function calls at compile time. If a

C++ application contains non-standard C++ constructs,

such as pointer downcasting, it may result in different

behavior. Off by default, but enabled with /Qipo

(Windows*) or -ipo (Linux* and macOS*). (C++ only)

/Qvec-threshold:0 -vec-threshold=0 Asks the compiler to auto-vectorize loops even if it does

not expect a performance benefit.

/Qvec[-] -[no-]vec Enables [disables] auto-vectorization. On by default at

/O2 (-O2)

9

Windows* Linux* & macOS* Comment

/Qstringop-strategy

:alg

-mstringop-strategy

=alg

Sets algorithm alg to use for buffer manipulation

functions such as memcpy and memset. libcall: tells

compiler to emit a library call; rep: compiler inlines using

rep movs or similar sequences; const_size_loop

(default): expands to an inline loop if size is known at

compile time and less than [/Q | -m]stringop-inline-

threshold

/align: arraynnbyte -align arraynnbyte Seek to align the start of arrays at a memory address

that is divisible by nn, to facilitate aligned loads and

help vectorization. (Fortran only)

/assume:[no]

buffered_io

-assume [no]

buffered_io

Accumulates data for successive sequential reads or

writes into a buffer for more efficient I/O. Default is

unbuffered. (Fortran only)

/assume:contiguous_

assumed_shape

-assume contiguous_

assumed_shape

Asserts that assumed shape dummy arguments will

always be contiguous (have unit stride). (Fortran only)

/assume:

contiguous_pointer

-assume

contiguous_pointer

Asserts that pointer dummy arguments will always be

contiguous (have unit stride). (Fortran only)

none -f[no-] exceptions

For C++, -fexceptions is default and enables exception

handling table generation. This may sometimes impede

vectorization. -fno-exceptions causes exception

specifications to be parsed, but ignored. Any use of try

blocks and throw statements will produce an error if any

function in the call chain has been compiled with -fno-

exceptions. (Linux* only)

/Qfnsplit:n -fnsplit=n Conditional code blocks with < n% probability of being

reached may be placed in a different code segment.

(Linux* and Windows* only)

/Qimf-domain-

exclusion:n

-fimf-domain-

exclusion=n

Specifies special case arguments for which math

functions need not conform to IEEE standard. The bits

of n correspond to the domains:

0 – extreme values (e.g. very large; very small; close to

singularities); 1 – NaNs; 2 – infinities; 3 – denormals; 4

– zeros.

/align: array64byte -align array64byte Seek to align the start of arrays at a memory address

that is divisible by 64, to enable aligned loads and help

vectorization. (Fortran only)

/Qopt-assume-safe-

padding

-qopt-assume-safe-

padding

Asserts that the compiler may safely access up to 64

bytes beyond the end of array or dynamically allocated

objects as accessed by the user program. User is

responsible for padding. Off by default.

** Several of these options are available for both Intel® and non-Intel microprocessors, but they may perform more

optimizations for Intel microprocessors than they perform for non-Intel microprocessors.‡

10

Floating-Point Arithmetic Options

Windows* Linux* &

macOS*

Comment

/fp:name -fp-model

name

Controls tradeoffs between performance, accuracy and reproducibility

of floating-point results at a high level.

Possible values of name:

fast[=1|=2] – Allows more aggressive optimizations at a slight cost in

accuracy or reproducibility. (default fast=1)

consistent – Enables consistent, reproducible results between different

optimization levels or between different processors of the same

architecture.

precise – Disallows compiler optimizations that might produce slight

variations in floating point results, except for generation of fused

multiply-add (FMA) instructions.

except – Enforces floating point exception semantics.

strict – Enables both the precise and except options and does not

assume the default floating-point environment. Suppresses generation

of fused multiply-add (FMA) instructions by the compiler.

/Qopt-

dynamic-

align[-]

-q[no-]opt-

dynamic-align

Allows [disables] certain optimizations that depend on data alignment

at run-time, and that could cause small variations in floating-point

results when the same, serial application is run repeatedly on the same

input data. On by default unless /fp:precise or /fp:consistent

(-fp-model precise or -fp-model consistent) is set.

/Qftz[-] -[no-]ftz When the main program or dll main is compiled with this option,

denormals (resulting from Intel® SSE or Intel® AVX instructions) at run

time are flushed to zero for the whole program (dll). Default is on

except at /Od (-O0).

/Qimf-

precision:

name

-fimf-

precision:

name

Sets the accuracy for math library functions. Default is OFF (compiler

uses default heuristics). Possible values of name are high, medium and

low. Reduced precision may lead to increased performance and vice

versa, particularly for vectorized code.

/Qimf-arch-

consistency:

true

-fimf-arch-

consistency=

true

Ensures that math library functions produce consistent results across

different Intel or compatible, non-Intel processors of the same

architecture. May decrease run-time performance. The default is ”false”

(off) unless /fp:consistent (-fp-model consistent) is set.

/Qprec-

div[-]

-[no-]prec-

div

Improves [reduces] precision of floating point divides. This may slightly

degrade [improve] performance. Default is OFF.

/Qprec-

sqrt[-]

-[no-]prec-

sqrt

Improves [reduces] precision of square root computations. This may

slightly degrade [improve] performance.

/Qprotect-

parens[-]

-f[no-]protect

-parens

Expressions are evaluated in the order specified by parentheses

Default is off unless /fp:precise or /fp:consistent (-fp-model precise

or -fp-model consistent) is set.

/Qfma[-] -[no]fma Suppresses generation of fused multiply-add (FMA) instructions by the

compiler (may still be present in run-time libraries).

11

/Qimf-use-

svml

-fimf-use-svml The compiler uses the Short Vector Math Library (SVML) rather than

the Intel® Math Library (LIBM) to implement scalar math functions.

/Qimf-force-

dynamic-

target

-fimf-force-

dynamic-

target

Code path through math library functions is selected at run-time based

on processor type. Default OFF.

/Qfp-

speculation

safe

-fp-

speculation

safe

Compiler disables certain optimizations if there is a risk that these

might cause a floating-point exception. Useful to set when floating-

point exceptions are unmasked for debugging.

See also http://software.intel.com/articles/consistency-of-floating-point-results-using-the-intel-

compiler

Processor Code Name With Instruction Set Extension Name Synonym
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Intel Microarchitecture Code Name Microarchitecture Instruction Set
ICELAKE-SERVER No synonym
ICELAKE-CLIENT No synonym
CANNONLAKE No synonym
SKYLAKE-AVX512 CORE-AVX512
KNM MIC-AVX512
KNL MIC-AVX512
SKYLAKE CORE-AVX2
BROADWELL CORE-AVX2
HASWELL CORE-AVX2
SILVERMONT SSE4.2
IVYBRIDGE CORE-AVX-I
SANDYBRIDGE AVX

Frequently Used Processor Names in Compiler Options

Intel

Microarchitecture

Code Name or

Instruction Set

-xcode

/Qxcode

-axcode

/Qaxcode

-arch code

/arch:code

-march=code

code must be

lower case

-mtune=code

/tune:code

code must be

lower case

ICELAKE-SERVER ✓ ✓ ✓ ✓ ✓

ICELAKE-CLIENT ✓ ✓ ✓ ✓ ✓

CANNONLAKE ✓ ✓ ✓ ✓ ✓

SKYLAKE-AVX512 ✓ ✓ ✓ ✓ ✓

KNM † ✓ ✓ ✓ ✓ ✓

KNL † ✓ ✓ ✓ ✓ ✓

SKYLAKE ✓ ✓ ✓ ✓ ✓

BROADWELL ✓ ✓ ✓ ✓ ✓

HASWELL ✓ ✓ ✓ ✓ ✓

SILVERMONT † ✓ ✓ ✓ ✓ ✓

IVYBRIDGE ✓ ✓ ✓ ✓ ✓

SANDYBRIDGE ✓ ✓ ✓ ✓ ✓

http://software.intel.com/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

12

COMMON-AVX512 ∆ ✓ ✓

CORE-AVX512 ✓ ✓

MIC-AVX512 ✓ ✓

CORE-AVX2 ✓ ✓ ✓ ✓ ✓

SSE4.2 ✓ ✓

CORE-AVX-I ✓ ✓ ✓ ✓ ✓

AVX ✓ ✓ ✓

corei7-avx ✓ ✓

ATOM_SSE4.2 ✓ ✓

SSE4.1 ✓ ✓ ✓

ATOM_SSSE3 ✓ ✓

corei7 ✓

atom ✓ ✓

SSSE3 ✓ ✓ ✓

SSE3 ✓ ✓ ✓

SSE2 ✓ ✓ ✓

SSE ✓

IA32 ✓

core2 ✓ ✓

pentiummx ✓

pentiumpro ✓

pentium-m ✓

pentium4 ✓

pentium3 ✓

pentium ✓

† Windows* and Linux* only
∆ A subset of MIC-AVX512 and CORE-AVX512

Intel® C++ Compiler Based on the Modern LLVM* Framework

The Intel C++ Compiler Based on the Modern LLVM* Framework, often referred to as ICC NextGen, is

invoked with the compiler option -qnextgen. This option is only available for Windows* or Linux*

icc/icl/icpc. This option and functionality are not available for icc on macOS.

Not all compiler options referenced in this Quick Reference Guide are available when compiling with

-qnextgen. A porting guide and additional usage information are available.

For product and purchase information, visit the Intel® Software

Development Tools site at: http://intel.ly/sw-dev-tools.

https://software.intel.com/en-us/articles/early-documentation-for-intel-c-compiler-based-on-the-modern-llvm-framework
http://intel.ly/sw-dev-tools

13

‡ Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,

functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel

microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel, the Intel logo, Intel VTune, Intel Core and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others. © 2018, Intel Corporation. All rights reserved.

